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USE OF ISOTROPIC FUNDAMENTAL SOLUTIONS 
FOR HEAT CONDUCTION IN ANISOTROPIC MEDIA 

M. M. PEREZ* AND L. C. WROBEL 
Wessex Institute of Technology, University of Portsmouth, Ashurst Lodge, Ashurst, Southampton S04 2A A, UK 

ABSTRACT 
A numerical formulation for solving homogeneous anisotropic heat conduction problems based on the use 
of an isotropic fundamental solution is presented in detail. The analysis is carried out assuming a generic 
position of the coordinate axes, which may not coincide with the principal directions of orthotropy of the 
material. The two primary integral equations of the method are derived from the governing differential 
equation of the problem. Then, the numerical procedure is developed by rewriting the internal degrees of 
freedom that arise from the domain discretization in terms of the boundary nodes and solving the resulting 
system of linear equations for the boundary unknowns only. Special attention is given to the differentiation 
of singular integrals which yields additional terms as well as to the evaluation of the resulting Cauchy 
principal value integral. The main feature of the proposed formulation is its generality, which makes possible 
its direct extension to solve the problem of three-dimensional heat conduction in anisotropic media and, 
foremost, to three-dimensional orthotropic and anisotropic elasticity or elastoplasticity. 
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INTRODUCTION 

The increasing number of industrial applications of anisotropic materials has attracted the 
attention of many researchers concerned with computational modelling. To solve current 
technological problems that occur, for instance, in the aerospace industry, the use of metals that 
have undergone heavy cold pressing, fibre-reinforced structures and heat shielding materials for 
extremely high temperatures1 is sometimes essential. In fact many applications of fibre-reinforced 
laminates, which are regarded as the most common anisotropic material2, are currently seen as 
conventional practice in engineering design. One clear example is the use of single and multilayer 
fibre-glass integrated circuit boards, which can be considered as thermal anisotropic plates3. 

The treatment of the heat conduction equation for anisotropic materials is generally regarded 
as difficult1,4, especially for finite regions1. Therefore, to provide answers to realistic industrial 
problems, it is necessary to resort to numerical methods. 

In this context, the boundary element method (BEM)5 - 7 is acquiring considerable popularity 
among engineers as it allows, in many cases, an impressive saving in the amount of time necessary 
to discretize the model when compared to the finite difference method and the finite element 
method (FEM). The numerical solution of problems of heat conduction in anisotropic media 
using Green's functions was first reported by Chang et al.4. 
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This paper is concerned with the development of an alternative integral equation formulation 
which makes use of an isotropic fundamental solution for solving heat conduction problems in 
homogeneous anisotropic media. The main feature of this approach is its generality, which 
enables a straightforward and systematic extension to solve two- and three-dimensional 
anisotropic elastic problems. In this sense, although the two-dimensional anisotropic fundamental 
solution presents no particular difficulty in its implementation8, the evaluation of the contour 
integrals for the three-dimensional case is quite complex, especially for the fundamental tractions9, 
and would be too time consuming for routine numerical use10. Another approach to the problem 
was presented by Kinoshita and Mura11 where convergent series expansions for the fundamental 
solution and its derivatives are discussed, though, according to Wilson and Cruse10, this 
formulation is not suitable for extensive computation either. These difficulties make the extension 
aforementioned attractive, in particular to improve computational efficiency. 

The idea of using an isotropic fundamental solution to solve anisotropic problems was first 
reported by Niwa et al.12, in an integral formulation to solve three-dimensional non-homogeneous 
anisotropic elastodynamic problems. Nevertheless, in this formulation, the homogeneous 
isotropic fundamental solution was used because an anisotropic elastodynamic one was not 
found in the literature. Later, Brebbia and Dominguez7 suggested the use of the isotropic elastic 
fundamental solution in an iterative formulation for anisotropic elastostatics, albeit no results 
were presented to validate the proposed method. Recently, Shi13 presented an integral formulation 
for anisotropic materials in the context of square orthotropic plates. 

The formulation proposed here draws its inspiration from the work of Shi13, along with the 
previous works of Mikhlin14,15 and Telles and Brebbia16 in computing derivatives of strongly 
singular integrals. Moreover, it is an extension of the method proposed by Perez and Wrobel17 

for orthotropic problems in potential theory. 
The present approach consists of rewriting the governing differential equation of the problem 

in a slightly different form to enable the application of the direct BEM formulation with the 
isotropic fundamental solution. This procedure leads to the first primary integral equation of 
the method. 

To cope with the resulting domain unknowns, a supplementary integral equation is derived 
from the original one. In its derivation, special care is taken in treating domain integrals that 
involve strongly singular kernels. 

To solve a problem by using the formulation proposed here it is necessary to discretize the 
contour into boundary elements and the domain into internal cells. In the present paper the use 
of constant boundary elements along with constant internal cells is adopted for the sake of 
simplicity. This discretization is applied to the primary integral equations of the method to 
obtain the related system of linear matrix equations. These matrix equations are then treated 
by using a technique equivalent to the FEM condensation of internal degrees of freedom18,19, 
leading to a final solution that is dependent exclusively on the boundary variables of the problem. 
Although details of the mathematical development are only given for two spatial dimensions, 
the basic idea behind the present method is not limited to plane problems. 

To assess the accuracy of the proposed formulation, two illustrative problems are considered 
in this work. In the first example analysed, the results obtained by the present method are 
compared with an analytical solution to the problem and with results obtained by a 
transformation of coordinates which enables the use of a conventional BEM program to solve 
the resulting Laplace's equation in the transformed space. The second example verifies the 
influence of the internal cells on the convergence of the method, by analysing an anisotropic 
strip using three different internal meshes. The results obtained for these discretizations are 
compared with the analytical solution to the problem, presented by Xiangzhou20. 
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Further developments to the method proposed here are suggested at the end of this work, 
where applications to elasticity and elastoplasticity are briefly considered. 

INTEGRAL EQUATION FORMULATION 
The governing differential equation for two-dimensional steady-state heat conduction in an 
anisotropic medium in the absence of internal heat generation is of the form: 

where T is the temperature; and kxx, kxy, kyx, and kyy are the coefficients of thermal conductivity 
of the medium. This first equation embodies the concept of general anisotropy, which refers to 
a non-homogeneous medium. 

In this paper, only homogeneous materials are considered. In addition, from Onsager's theorem 
of the thermodynamics of irreversible processes1,21, it is shown that when the fluxes and the 
temperature gradients are related to each other linearly, as implied in (1), the conductivity 
coefficients obey the reciprocity relation: 

Thus, taking into account these considerations, (1) can be rewritten as: 

It is also worth recalling that, as a consequence of the linear relation implied in (1), the heat 
flux is not necessarily normal to the isotherm passing through the point considered1. 

For convenience of the mathematical formulation, (3) is rewritten in the form: 

where k1 expresses the ratio (kxx — kyy)/kxx and k2 expresses the ratio 2kxy/kxx. 
Through the application of either Green's second identity or a weighted residual technique 

in which the right-hand side of the previous equation is considered as a fictitious heat source 
term, (4) is transformed into the following equivalent integral equation: 

where ξ and χ are the source and field points, respectively; T*(ξ, χ) is the fundamental solution 
of the two-dimensional Laplace's equation (i.e. T*(ξ, χ) = (l/2π)ln(1/r((ξ, χ)), with r(ξ, χ) 
denoting the distance between ξ and χ); fn(χ) = ∂T(χ)/∂n(χ) is a force1 at point χ, where n is 
the outward normal vector; f*n(ξ, χ) = ∂T*(ξ, χ)/∂n(χ) is the derivative of the fundamental 
solution T* with respect to n; Ω is the domain of the anisotropic medium and Γ its boundary. 
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An integral equation similar to (5) can be obtained for boundary points ξ by a limiting process, 
leading to: 

where c(ξ) is a function of the internal angle of the boundary at point ξ; b1(T) = ∂2T(χ)/∂y2 

and b2(T) = ∂2T(χ)/∂x∂y. Then, the term between the square brackets in (6) is regarded as an 
unknown domain variable which should be computed along with the unknown boundary 
variables. This assumption, although not essential, leads to a significant reduction in the number 
of matrix operations necessary to determine the boundary solution, when compared with 
considering each term within the square brackets as a separate domain variable. 

Hence, the use of the isotropic fundamental solution to solve this problem implies that another 
integral equation must be established in order to cope with the internal variables. This 
supplementary equation is obtained by means of a linear combination of two second-order 
derivatives of (5). The first one is the second derivative of (5) with respect to the coordinate y 
of the source point ξ, yξ, as follows: 

The second equation is obtained from cross-differentiation of (5) with respect to xξ and yξ,, 
which leads to: 

Finally, by multiplying (7) by k1 and (8) by k2, and subtracting the latter from the former, 
the sought supplementary integral equation is established as: 
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where the common term between square brackets in the kernel of both domain integrals turns 
out to be the same as the one between the curly brackets at the beginning of the equation. 
Equations (6) and (9), together with the boundary conditions, are then sufficient to determine 
the unknown variables of the problem. 

Differentiation of the singular integrals 
There is no difficulty in the differentiation of the boundary integrals in (9), as they are regular 

integrals. On the other hand, the treatment of the domain terms in (9) deserves special attention 
as the concept of differentiation of strongly singular integrals does not follow the classical 
rule14,15. The differentiation of these latter integrals leads in fact to additional terms, which can 
be determined through the use of Leibnitz' rule* 6,16,22. 

Initially, following the treatment used by Telles and Brebbia16, the expression for the derivative 
of the first singular domain integral in (9) should be written in a more formal representation, 
assuming the form: 

where Ωε arises from Ω by removing a circle of radius ε centred at the source point ξ. This 
means that this integral is to be interpreted in the Cauchy principal value sense. For simplicity 
and without loss of generality, as the integration in (10) will be evaluated over each constant 
internal cell, the term [k1b1(T) — k2b2(T)] can be considered as an unknown constant that 
will multiply the result obtained for each internal cell. 

In order to deal with the singularity, it is possible to define a polar coordinate system 
based at the point 0 ξ, as shown in Figure 1a. Then, if a small increment in the rectangular 
coordinate y of the singular point is given, not only r and f become different from and but 
also is shifted, as seen in Figure 1b, indicating their dependence on the coordinates of the 
source point. 

Applying the mentioned transformation of coordinates to (10), the following expression arises: 

Taking one derivative at a time of the integral between the curly brackets it is possible to apply 
Leibnitz' rule twice, first obtaining: 

where the last term is equal to zero, as the vector R is independent of the position of the source 
point (see Figure 1). 

* According to Leibnitz' rule: 
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Next, taking into consideration that ξ = O and that this leads to the distance being equal 
to the radius ε (Figure la), which does not depend on the position of the source point, it is 
possible to take the limit of this expression at this point, thus obtaining: 

as the second term on the right hand side of (12) vanishes due to the weak singularity presented 
by the product T*(ε) when yξ and ε tend to zero simultaneously. The second integral in (13) 
must be interpreted in the CPV sense, which is henceforth denoted by the dash through the 
integration symbol. 

Finally, the second derivative of the integral between the curly brackets in (11) can be obtained 
by applying Leibnitz' rule to the resulting integral in (13), which gives: 

where, analogously to what happened in (12), the last term vanishes as R does not depend on yξ.. 
In the second term on the right-hand side of (14) it is worth looking in greater detail at the 

derivative of with respect to yξ but first it is important to stress that is the distance from the 
origin of the polar system of coordinates to a field point on , denoted and not from the 
source point to although both distances initially coincide (compare Figure 1a and 1b). Then, 
it should be recalled that as the source point ξ is moved the circle goes along with it, making 
it necessary to apply the formal definition to differentiate with respect to yξ as expressed by: 

where is the distance from the origin of the system of coordinates to a point defined on the 
boundary Figure 1a; ∆yξ is the displacement applied to the position of the source point in 
the direction y in order to evaluate the derivative; and is the distance from the origin of the 
system of coordinates to the same reference point on the boundary that is now displaced ∆yξ  
from its original position (Figure 1b). 

The derivative ∂/∂yξ, (15), is obtained by first expanding according to the cosine theorem 
applied to the triangle and then taking the limit as ∆yξ tends to zero. This enables to 
determine as being equal to —sin θ and, consequently, the second term in the right-hand 
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side of (14) can now be written as: 

The final expression for the second derivative of the domain integral with respect to the 
coordinate y of the source point (11) is obtained by taking the limit of (14) as ε tends to zero 
and then transforming the resulting expression back to the rectangular coordinate system, leading 
to: 

where the integral can be evaluated semi-analytically for the type of internal discretization adopted 
in this work and the second term on the right-hand side can be seen either as resulting from 
the application of Leibnitz' rule or, as expressed by Bui22, as the convected term due to the fact 
that the domain Ωε changes with the position of the source point ξ. 

The same treatment was applied to the second domain integral in (9), leading to: 

Accordingly, (9) can be rewritten in a more compact form as follows: 

where m is the number of internal cells obtained in the discretization procedure and χi is the 
collocation point at the centre of internal cell i. 

For the sake of the numerical formulation it is worth mentioning that the term between 
braces at the beginning of (19) will eventually be added to the similar one under the summation 
symbol after the collocation technique is applied to the left-hand side of the same equation. This 
procedure is especially convenient to avoid the need to compute b1[T[T(ξ)] and b2[T(ξ)] 
numerically, which would involve a larger number of matrix operations. 

MATRIX FORMULATION 
The numerical solution of the system of equations established by (6) and (19) is obtained by 
dividing both the contour Γ into l constant boundary elements and the domain Ω into a mesh 
of m rectangular cells, within which the unknown domain variable is regarded as constant. In 
the internal discretization collocation points are defined at the centroid of each cell. Then, 
applying the discrete version of (6) at each boundary node, the first set of linear equations is 
obtained in the form: 
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where H and G are the conventional l x l BEM influence matrices; T = Ti (i = 1,...,l) and 
F = fni (i = 1,...,l) are the boundary temperature and normal boundary force vectors, 
respectively; E is an l x m matrix resulting from the domain integration; and B = bi (i = 1,..., m) 
is the vector of domain unknowns [k1b1(T) — k2b2(T)] at the internal collocation points. 

Another set of equations can analogously be obtained by applying the discretized version of 
(19) at the m internal collocation points, in the form: 

where and are m x l matrices concerned with the boundary integrals whilst is an m x m 
matrix resulting from the domain integral. 

Equations (20) and (21) contain l + m variables, that is, the conventional l boundary unknowns 
plus the m unknown domain terms. Eliminating the m domain unknowns in vector B, (21) can 
be written in the following form: 

where is the inverse of matrix 
The expression for vector B in (22) can be substituted into (20), reducing it to: 

This procedure is equivalent to the FEM condensation of internal degrees of freedom18,19. 
The final system of linear equations can be obtained by substituting the prescribed boundary 

data and rearranging (23) in order to obtain an expression of the form: 

from where the boundary unknowns X of the problem are computed. Once this solution is 
obtained, the domain unknowns can be computed by referring to (5). 
Evaluation of the Cauchy principal value integrals 

Due to the type of internal discretization adopted in this work it is possible to evaluate the 
components of matrix E using a semi-analytical approach. The integrals over the cell that 
contains the source point ξ were determined analytically while the integration over the 
non-singular cells was computed numerically using standard Gaussian quadrature. 

In order to integrate analytically over the cell that contains the source point, Ωs, the domain 
integral in (17) is expanded as: 

Next, a polar system of coordinates centred at the source point is introduced, enabling to 
rewrite (25) in the form: 

where R(θ) is the distance from ξ to the cell contour (see Figure 2). 
The right-hand side of (26) can then be integrated with respect to r, leading to: 
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As the origin of the polar system of coordinates O, Figure 2, coincides with the source point 
ξ at the centre of the internal cell, the last integral in (27) is identically zero. In addition to that, 
the symmetry of the cell and of R(θ) makes the first integral in (27) also equal to zero, thus 
making I1s identically equal to zero. 

Following similar approach, (18) can be expanded as: 

which, after the introduction of the polar system of coordinates centred at ξ can be rewritten 
in the form: 

The right-hand side of (29) was then integrated with respect to r, similarly to what was done 
in (26), thus leading to: 

where the first integral is equal to zero because of the symmetry of the cell and of R(θ). Besides, 
since the origin of the polar system of coordinates 0, Figure 2, coincides with the source point 
ξ at the centre of the internal cell, the second integral in (30) is also equal to zero, therefore 
resulting that I2s is identically equal to zero. 

It is worth noting that should higher order internal cells be used the problem of correctly 
evaluating the singular integrals in (17) and (18) has to be tackled by using a different approach23. 

NUMERICAL EXAMPLES 
To assess the performance of the proposed formulation several tests were carried out and their 
results compared with analytical solutions, when available. In what follows, two of these tests 
are described. 

In Example 1 the results computed by using the present formulation are compared with an 
analytical solution for the problem and also with the results obtained by a transformation of 
coordinates which enables the use of a conventional BEM program for Laplace's equation7. In 
this latter case the original rectangular coordinates of the problem, as shown in Figure 3, are 
transformed onto the principal axes of orthotropy to eliminate the cross term ∂2T/∂x∂y in (3). 
Then, the transformed governing differential equation becomes: 

where ηi stands for the principal direction i of the material and kηi is the corresponding 
coefficient of thermal conductivity. Thus, the assumption of a homogeneous medium implies 
that the material is, in fact, orthotropic but its analysis with the present formulation is carried 
out using a set of coordinate axes that does not coincide with the principal directions of orthotropy. 
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Following the rotation of axes, a change of variables expressed by: 

is applied, where k is an arbitrary constant with the same dimensions as ki (see Chao24). This 
change of variables makes it possible to rewrite (31) in the form of Laplace's equation, though 
the transformed geometry, Figure 4, poses the need to specify the tangencial force (i.e. 
ft = ∂T(χ)/∂t(χ) where t is the vector tangent to the boundary at point χ) for each boundary 
node where Neumann boundary conditions are prescribed in the original problem. Furthermore, 
this transformation of coordinates can result in severe element distortion4,25 thus making this 
approach not suitable for general purpose implementation25. 

The domain used as reference for the first example was a unit square with a boundary 
discretization of 40 constant elements of the same length and a domain discretization of four 
square internal cells as shown in Figure 3. 

In the second example the number of internal cells used to model the thermal behaviour of 
an anisotropic strip is varied in order to verify the convergence of the method. 

In both examples, according to the second principle of thermodynamics, the magnitude of the 
coefficients kij is limited by the requirement that1,21: 

Example 1 
In this example a particular solution was derived from a complete second degree polynomial 

of the form: 

which, when applied to the governing differential equation of the problem, (4), becomes: 

Taking into consideration the dimensions of the proposed model, it is possible to prescribe 
conditions at the boundaries according to (35). These boundary conditions can be expressed by: 
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on the side y = 0; 

on the side x = 1; 

on the side y = 1; and: 

on the side x = 0. 
Next, values for the coefficients of thermal anisotropy are assumed as kxx = 0.50, kxy = 0.25 

and kyy = 0.40. In addition, the coefficients of the polynomial are also specified as a2 = 2,a3 = 3, 
a4 = 4, as = 5 and a6 = 6. These coefficients are then applied to the expressions for determining 
the boundary conditions at all element nodes. The results obtained by means of the proposed 
formulation are presented in Figure 5, along with the results obtained by using transformation 
of coordinates and the analytical solution to the problem. It can be seen that temperature and 
normal force distributions are virtually coincident for all the methods. The slightly larger 
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differences in the normal forces near the corners can be attributed to the use of constant elements 
in the BEM formulation4. 

A particularity of this problem is that the second derivatives ∂2T/∂y2 and ∂2T/∂x∂y are 
constant all over the domain; thus the function b(T) is correctly represented by constant cells, 
that are only necessary for integration purposes. 

Example 2 
In this example, the results obtained by means of the formulation proposed in this article are 

compared with the analytical solution for a steady state heat flow in an infinite homogeneous 
anisotropic strip obtained by Xiangzhou20. 

The strip under consideration, depicted in Figure 6, is replaced for modelling purposes by a 
strip of finite but very large length, i.e. a narrow rectangle with length equal to ten times its 
height. In addition, the coordinate system (x, y) conforms with the strip geometry but does not 
coincide with the principal directions of orthotropy of the material. 

The conductivity coefficients are defined as kxx = 0.5, kxy = 0.2236 and kyy = 0.4 whereas the 
boundary conditions are prescribed in the form of temperatures that are symmetric with respect 
to the y axis. These conditions are defined as: 

and 

For the numerical solution of this problem, the boundary discretization presented in Figure 7a 
is kept unchanged while three different domain meshes, shown in Figures 7b, c and d are 
tested in order to check the convergence behaviour of the method. 

The results for the normal forces fn obtained by using each mesh are presented along with 
the analytical solution for the top and bottom sides of the strip in Figures 8 and 9, respectively. 
It is of interest to note that, in Figure 8, the two very sharp cusps of the exact solution at x = 1.00 
and x = —1.00, which are due to the discontinuity at these points of the temperature gradient 
in the x direction, are also obtained by means of the proposed formulation, even when very 
simple internal discretizations are used. In Figure 9, the translated symmetry owing to the effect 
of the anisotropy of the conductive material is satisfactorily reproduced. Moreover, it can be 
seen from both Figures that the overall results are in complete agreement with the analytical 
solution, therefore demonstrating the validity of the formulation presented. 
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CONCLUDING REMARKS 
In this paper a system of singular integral equations for modelling heat conduction problems 
in homogeneous anisotropic media is formulated and solved numerically. The proposed method 
uses the isotropic fundamental solution for the Laplace's equation in a direct BEM approach. 
The strict importance of the convected terms16,22 in the differentiation of integrals that involve 
singular kernels is emphasized. Some examples are presented to assess the accuracy of the 
proposed formulation. 

The method proposed can be readily extended to three-dimensional analysis. Moreover, it 
can be extended to model non-homogeneous anisotropic problems by dividing the continuum 
into a number of subregions5,7 within which the medium properties could be regarded as 
homogeneous. Bodies constituted of different orthotropic materials can also be treated by using 
the same approach whereas curved geometries can be represented by using higher order boundary 
elements and parametric internal cells provided that due care is taken in the evaluation of the 
Cauchy principal value integrals that arise in the proposed formulation23. 

In fact, the generality of the formulation presented here makes it possible to extend it to 
anisotropic elasticity, thus avoiding the complexity of its fundamental solution. Similarly, it 
could also be extended to elastoplasticity by including the treatment for anisotropy in the 
formulation recently proposed by Carrer and Telles26. This last formulation models transient 
dynamic elastic and elastoplastic behaviour of structures using the elastostatic fundamental 
solution. In this prospective extension, the anisotropic effects can be directly incorporated by 
using the internal discretization originally devised to take into account the inertial domain 
integral. 
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